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COMPARISON OF CONVECTIVE HEAT TRANSFER MODELS 

IN POROUS MEDIA 

Yu. A. Zarubin UDC 536.244 

A comparison of experimental data with theory has shown the applicability of 
both the one-temperature and the two-temperature models of convective heat 
transfer in porous media. 

The temperature field in a porous medium, formed as a result of convective transfer, 
often governs the intensity of the physical and chemical processes occurring in the equip- 
ment of heterogeneous catalysis, in heat exchangers, in oil and watering bearing deposits 
and so on. The main physical phenomena caused by the temperature distribution in a porous 
medium are convective heat transfer, the heat conduction of the porous medium skeleton and 
heat transfer agent, the heat transfer between them, the dispersion of the flow of heat 
transfer agent in the porous medium, heat transfer with the surrounding medium, and the ac- 
tion of heat sources and sinks. It is extremely complicated to analyze a universal mathe- 
matical model because the factors are diverse and the coefficients entering into the model 
are uncertain. It is therefore important to identify the important factors and to study 
the possible use of simplified models accounting for a limited number of factors and pro- 
viding reliable heat calculations, at least at an engineering level. 

The model of convective heat transfer in porous media, accounting for heat conduction 
of the phases and interphase heat transfer and with no heat sources, can be formulated in 
the form based on the method of the ensemble average, e.g., in [I, 2]: 

grad q~.~ q- div (miv~p~ci) q_ ~0 '~ (mip~ci.)= ~ q i j ,  i =  1, n. (1) 

In addition, we evidently have the relations Em i = i, qij = -qji, and for the skeleton of 
the porous medium we have (i = i) v I = 0. 

It is important that the heat flux due to conduction of the phases for the porous 
medium skeleton must be determined with allowance for the thermal resistances at the points 
of contact of the grains, and for the liquid and gaseous phases one must allow for the com- 
ponent due to dispersion of the flow because of multiphase motion, inhomogeneity of the por- 
ous channels, and the presence of a velocity distribution inside an individual pore channel. 
To allow for these phenomena analytically is extremely complex, and this leads to the use 
of simplified models in which the transfer coefficients (heat conduction and interphase 
heat transfer) are in the nature of effective values and are determined from results of 
natural modeling. The widest use has been made of the one-temperature model, which postu- 
lates that the temperatures of the porous medium skeleton and the heat transfer agent are 
the same. Accordingly, the intensity of deformations of the temperature field are deter- 
mined by the value of a single effective thermal conductivity. Models which account for 
interphase heat transfer are customarily studied [3, 4] with the assumption that one can 
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neglect heat conduction of the porous medium skeleton because of the thermal resistances at 
the intergrain contact points. In the case of a uniform heat transfer agent (n = 2) these 
models are conveniently called two-temperature. In essence the one-temperature model is a 
special case of the two-temperature model, including the heat conduction of only one of the 
phases. The simplest two-temperature model takes account of only interphase heat transfer. 
In this case the transfer coefficient governing the deformation of the temperature field is 
the effective coefficient of heat transfer rate. 

Since the main objective of modeling the heat transfer process is the temperature field 
of the porous medium, it must also be the main source of information to determine the coef- 
ficients of the model. Technically it is simple to identify the transfer coefficients from 
the variation of heat transfer agent temperature at the outlet of the porous medium. 

To describe the temperature distribution in the porous medium we use the system of 
equations (i) without accounting for heat conduction of the skeleton of the porous medium 
(X i = 0, X2 = X), and assuming additionally that the heat transfer agent is homogeneous 
(n = 2, m 2 = m), that the heat flux between the heat transfer agent and the skeleton of the 
porous medium is proportional to the temperature difference between them, and that the heat 
transfer to the external medium follows Newton's law. If the temperature of the saturated 
porous medium at time zero is equal to the external temperature, and the injected heat 
transfer agent has mass flow rate and temperature constant in time, then the one-dimensional 
heat transfer problem with appropriate boundary conditions is formulated in the form: 

0tl 
(i -- m) plCl -- ~ ( t i  -- t2), & 

% Ozt2 mp~c2[v at2 a t 2 . ]  _ ~ ( t ~ _ t i ) + ~ ( t ~ _ _ f o ) ,  (2 )  
ox - W - -  L ~ + & d " 

h(~--0, x)--&(~=0, x)=to, &(x=0, ~=t . .  

Equation (2) was solved using an integral Laplace transformation and including an 
Efros transformation [5] in computing the originals. When the condition ~/a << 1 is evi- 
dently fulfilled it can be represented in the form: 

)l i = -- -- a Mi m (~) Io 1 2 l / ~ {  - -  7)1 d~ -- 
\ 2A ,- 
- 0 

where 

7vii rl 

�9 [ 2 ]  / a g  ~ fl.1 - - -  ~i]  a~d~l } - - - a  [ ( M i - - ~ ] )  [9(~) /o ' ~',~" " ; ,  
o 

r:" -- exo ( X afvli~(q~(bli)__a:i}iq)(~) 1o[2 qc,~,~(A1i_ - ~)] d~l 
" " 2 A  ! t j 0 

1 [exp0~X)erfc ( X / ~ ! ' .y '- E ~! 
, -i-), 

u2 = i . e - -  I T *  ::: T ~ e x D ( K X ) ,  K = -  1 - - 3 / ]  + 4 B z ~  
' 4A z A ' �9 2A 

(3) 

(4) 

(5) 

For p2 < 0 Eq. (5) reduces to the complementary probability integral of a complex vari- 
able, which is converted to the real form and calculated using functions obtained in [6]. 

For the one-temperature heat transfer model t i = t 2 = t the solution of Eq. (2) is as 
follows : 

2 , ~  -}- 2 4- erfc ( , (6) 
�9 . 2 . 

1 (pc av, PeZq_ 4Bi). and here, analogously, T* - Texp(KX*), but K = 

The two-temperature model, when neglecting heat conduction both of the skeleton of the 
porous medimn and in the heat transfer agent, gives a solution of Eq. (2) in the form: 
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Mi 

T~ = a 5 exp [--aE + (a - -  1) X] lo [2 ~ - X  (~ - -  X)I d~, 
X (7) 

T$ = T I + exp [--aMi + (a -- I) X] Io [2 ]laX (Mi -- X)], 

and here T~ = Tiexp(-BX). 

* is in essence the ratio of the ambient temperature to the es- It is noteworthy that T i 

tablished temperature at a given point as �9 + ~. This points to the fact that, using Eqs. 
(6) and (7) in particular, one can identify the effective transfer coefficients from the 
variation of heat transfer agent temperature, without determining the heat transfer coef- 
ficient to the external medium, which reduces the order of the identification problem. 

The physical modeling of the thermal wave was performed on saturated porous media, in 
the form of glass tubes of diameter 18-36 mm, length 200-480 mm, filled with quartz sand of 
average fraction 0.25 mm. The heat transfer agent temperatures were recorded at the inlet 
and exit of the porous medium by thermocouples with an accuracy of 0.i K. The thermostat 
system and the supply system for heat transfer agent, which was de-aerated distilled water, 
ensured that a given temperature was reached at the inlet to the porous medium in 2-3 sec, 
including the response time of the recording equipment. 

The identification problem was solved by the method of spiral search for a minimum of 
the least squares deviation between the computed and the actual temperatures at i0 points 
in the interval (0.05-0.95)T~. In addition to the transfer coefficients we determined the 
mean heat capacity of the heat transfer agent, as a criterion of the degree of filling of 
the porous space. 

A comparison of the solutions of Eqs. (6) and (7) showed that when one uses the effec- 
tive transfer coefficients there is no basis for preferring one of the models. Both models 
describe the variation of heat transfer agent temperature with the same accuracy. However, 
the residual mean square deviation after solving the identification problem for the two 
models did not exceed 0.048, which, for a temperature difference between the heat transfer 
agent and the external medium of 60 K, corresponds to a maximum error of 2.9 K. The mean 
errors of 23 tests for the one and two-temperature models were 0.031 and 0.024, respectively, 
and did not differ significantly according to the Fisher test. 

The results of determining the transfer coefficients in quartz sand are shown in Figs. 
1 and 2 in the form of the Nusselt number and the l~/l 2 ratio as a function of the Peclet 
number. In the interval Pe S 4 both dependences are decribed by the linear correlations: 

~e/X2 = 3 , 0 4 1 + 5 , 2 7 9  Pe, (8) 

Nu = 1.084.10-2Pe (9)  

with correlation coefficients of 0.977 and 0.904, respectively. 

It is interesting that there is no reliable lower value of Nusselt number for Pe = 0. 
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Fig. i. Dependence of the effective thermal conductivity on 
the Peclet number (the points are the experiment). 

Fig. 2. Relation between the Nusselt number and the Peclet 
number. 
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However, physically the free term in Eq. (8) evidently has a value. For zero velocity of 
motion of the heat transfer agent the deformation of the temperature field must be due to 
heat conduction of the phases, occurring whether the heat transfer agent is moving or not. 
The behavior of the correlations near the zero point show a preference of the one-tempera- 
ture model for calculating the temperature fields at small velocities of motion of the heat 
transfer agent (tentatively for Pe < 0.2). 

For Pe > 4 one observes a crisis in both the one-temperature model (6) and the two- 
temperature model (7), appearing as a rapid growth of the residual dispersion after solving 
the identification problem and a considerable scatter of the correlation points in a narrow 
range of the speed of the heat transfer agent. This is associated with neglecting the non- 
established part of the perturbing temperature peak and heat removal at the inlet to and the 
outlet from the porous medium. An estimate shows that one can neglect the influence of the 
time to  establish the temperature if it does not exceed 5% of the time for the thermal front 
to move to the exit from the porous medium. 

Thus, a comparison of the experimental and computed variation of the temperature of the 
heat transfer agent at the exit from the porous medium, obtained using the one-temperature 
and the two-temperature heat transfer models, together with the nature of the correlating 
equations, shows that both models are equally applicable for engineering purposes for calcu- 
lating thermal processes in porous media when effective values of heat transfer coefficients 
are used in the models. For small values of Peclet number the one-temperature model is pre- 
ferred. 

NOTATION 

qxi) heat flux due to heat conduction of the i-th phase; m i) fraction of the volume 
of the porous medium occupied by the i-th phase; v i) speed of motion of the i-th phase; Pi, 
c i and hi) density, specific heat, and thermal conductivity of the i-th phase; qij) heat 
flux between the i-th and j-th phases; t i) temperature of the i-th phase; t o ) initial tem- 
perature; tH) temperature of the heat transfer agent at the inlet to the porous medium; T) 
time; x) linear coordinate; g) interphase heat transfer coefficient; p) coefficient of heat 
transfer to the external medium; d) mean diameter of grains of the porous medium; I0(')) 
modified Bessel function of the first kind, of order zero. The dimensionless coordinates 
and criteria are: T i = (t i - t0)/(t H - to); X = ~x/mvp2c2; X* = x/d; Mi = ~T/mp2c2) Mik- 
heev number; Fo = ~2T/[mp2c 2 + (i - m)Picl]d 2) Fourier number; Pe = mp2c2vd/% 2) Peclet num- 
ber; Nu = ~d2/X2) Nusselt number; Bi = ~d2/~2) Blot number; a = mp2c~/(l - m)pici; A = 
%2~/(mvp2c2)2; B = p/e. 
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